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Abstract. The subject of predicting structural response, for control or fatigue assessment pur-
poses, via output only vibration measurements is an emerging topic of Structural Health Mon-
itoring. The subject of estimation of the states of a partially observed dynamic system within
a stochastic framework has been studied by many scientists and there are well developed al-
gorithms to manage both linear and nonlinear state-space models. Dealing with structural
systems, the system states comprise the response displacements and velocities at the degrees
of freedom of the structure. On one hand, in practical cases it is difficult or sometimes impos-
sible to measure structural displacements and velocities for continuous monitoring purposes.
On the other hand, recent developments in highly accurate low consumption wireless MEMS
accelerometers permit continuous and accurate acceleration measurements when dealing with
structural systems. Dealing with operational conditions the uncertainties stemming from the ab-
sence of information on the input force, model inaccuracy and measurement errors render the
state estimation a challenging task, with research to achieve a robust solution still in progress.
Eftekhar Azam et al. [1] have proposed a novel dual Kalman filter to accomplish the task of
joint input-state estimation for linear time invariant systems. In this study, the extension of such
a scheme is considered for the joint input-state and parameter estimation of linear systems.
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1 INTRODUCTION

This paper focuses on development of algorithms that facilitates the problem of full response
predictions for structural systems with uncertain properties via sparse output-only vibration
measurements. The latter is particularly useful within the context of fatigue estimation. The
concept of using the estimated structural response for fatigue damage prediction was first pro-
posed by Papadimitriou et al. [2], where a method was presented that relies on the Kalman
filter for estimating power spectral densities of the strain in the body of the structure, in this
manner predicting the remaining fatigue life. To identify the fatigue damage, a time history of
the stresses in the hotspot points of the structure is required. To estimate the stress in a point
of interest, the displacement field at that point is needed; therefore, a reliable state estimate is
crucial for an accurate fatigue damage prediction.

The topic of estimation of the states of a partially observed dynamic system in a stochastic
framework has been studied by many scientists and there are well developed algorithms to
manage both linear (e.g. the Kalman filter [3]) and nonlinear (e.g. the particle filter [4], the
unscented Kalman filter [5, 20]) state-space models. In order to yield accurate estimates of state
of the system, in addition to sparse output measurements, the latter algorithms require accurate
knowledge of the input to the system. However, in most operational conditions the input is
unknown and is practically impossible to measure. Recently, the problem of estimating the
states of the system in presence of unknown input has gained interest among the researchers.
Gillijns and De Moor proposed a new filter for joint input and state estimation for linear systems
with direct transmission, that is globally optimal in the minimum-variance unbiased sense [6].
Lourens et al. [7] have proposed an extension of the method developed in Gillijns and De Moors
work to cope with the numerical instabilities that arise when the number of sensors surpasses the
order of the model. Lourens et al. [8] have proposed an augmented Kalman filter for unknown
force identification in structural systems, and concluded that the augmented Kalman filter is
prone to numerical instabilities due to un-observability issues of the augmented system matrix.
Naets et al. have proposed application of dummy displacement measurements in combination
with AKF for stable force estimation [9]. Eftekhar Azam et al. have proposed a dual Kalman
filter (DKF) for simultaneous estimate of the input and state of the linear time invariant dynamic
systems via sparse acceleration measurements [1].

Hernandez [10] proposed an observer that possesses similar characteristics to the Kalman
filter in the sense that it minimizes the trace of the state error covariance matrix. The main
notion behind the algorithm is that the proposed observer can be implemented as a modified
linear finite element model of the system, subject to collocated corrective forces proportional
to the measured response. The latter filter requires the spectral density of the input for opti-
mizing the applied gain. Bernal and Ussia have proposed a sequential deconvolution for input
estimation in linear time invariant systems [11]. Kazemi Amiri and Bucher have developed a
new parametric impulse response matrix utilized for nodal wind load identification by response
measurement [12]. The methods and techniques mentioned herein require a model of the sys-
tem for estimation of response at non-collocated degrees-of-freedom (DOF). In many cases, the
parameters of the mathematical models need to be synchronously updated due to causes such as
degradation, or environmental influence, resulting into a joint state and parameter identification
problem. In doing so, it is a common practice to augment the state vector with the unknown
parameters of the system and estimate the dynamics of the resulting augmented state vector.
Within such a context, Eftekhar Azam and Mariani have studied the use of sigma-point Kalman
filter and particle filters for identification of nonlinear softening constitutive models [13]. Chatzi
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and Smyth have applied evolutionary particle filters for identification of states and parameters
of a dynamic structure represented by a Bouc-Wen model [14]. In subsequent work, Chatzis
et al. [21] have explored the coupling of Stochatsic Subspace methods with the UKF for joint
state and parameter identification. Eftekhar Azam and Mariani have applied a hybrid extended
particle filter for identification of nonlinear parameters of a four story shear-type building [15].

In works reviewed in latter paragraphs the focus has been set either on state-input or state-
parameter estimation. This work, overviews existing schemes and proposes a novel approach
for simultaneous prediction of input, states and parameters of a structural system. In related
work, Naets et al. have proposed an estimation technique which employs physical models to
perform coupled state/input/parameter estimation [16]. In order to obtain a modeling technique
which permits the identification of a wide range of parameters in a generic fashion at a low
computational burden, the use of a parametric model reduction technique is proposed. The
reduced model is coupled to an extended Kalman filter (EKF) with augmented states for the
unknown inputs and parameters. In this study, an extension to the dual Kalman filter scheme
proposed by Eftekhar Azam et al. is pursued [1]. The proposed algorithm takes advantage of
a dual Kalman filter for estimating the input in a first stage, and an Unscented Kalman Filter
(UKF) for jointly estimating the states and parameters of the system in a second stage.

As mentioned in the preceding paragraph, in this study the UKF is adopted for the state-
parameter estimation stage. In the realm of automatic control, the Extended Kalman Filter
(EKF) has been deemed as the de facto standard for online state and parameter estimation. The
EKF is based on successive linearizations of the nonlinear state-space equations at each time
instant and application of the standard Kalman filter to the linearized equations. The EKF has
been successfully applied to many problems; however, in presence of severe nonlinearities the
performance of the EKF can be drastically affected. Moreover, the procedure of the lineariza-
tion demands an estimate of the jacobian of the nonlinear function, which may not be always
practical [17]. To address the shortcomings of the EKF, Julier and Uhlmann have proposed the
unscented Kalman filter, where the statistics of the state and observation process are propagated
directly through a minimal set of quadrature points [5]. The UKF requires several direct anal-
yses of the numerical model of the system and is may become computationally cumbersome.
In alleviating the latter issue, Eftekhar Azam et al. have proposed a parallelization scheme for
the UKF [5], and have studied the scalability and efficiency issues when the parallelization is
pursued within a shared-memory (OpenMP) architecture [18].

In what follows, in Sec. 2 the mathematical formulation of the problem and the relevant
notations are introduced. In Sec.3 the novel state, input and parameter estimation method is
outlined. In Subsection 3.1 the dual Kalman filter approach for input estimation based on accel-
eration observation is explained. Subsequently, Subsection 3.2 overviews the unscented Kalman
filter implementation for state-parameter estimation and Subsection 3.3 summarizes the initial-
ization, measurement update and time update phases of the proposed scheme. Section 4 is
devoted to the demonstration of numerical results obtained by applying the proposed method
to a simulated example, while in Section 5 the results are summarized and some guidelines for
further research are provided.
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2 PROBLEM FORMULATION

2.1 Preliminaries

A linear structural system with n DOFs can be represented by a second–order vector differ-
ential equation as

Mü(t)+Cu̇(t)+Ku(t) = f(t) = Spp(t) (1)

in which M, C and K ∈ Rn×n are the mass, viscous damping and stiffness matrices, respec-
tively, u(t) ∈ Rn is the vibration displacement vector, and f(t) ∈ Rn is the vector of excitations
expressed as a superposition of time histories p(t) ∈ Rm (m ≤ n) that act on specific DOFs of
the structure, as indicated by the influence matrix Sp ∈ Rn×m. In Eq. 1 it is assumed that the
stiffness matrix is amenable to unknown/unmodelled changes, due to material degradation or
environmental influences, which result in a shift of the system properties.

By defining the [2n× 1] state vector as x(t) = [uT (t) u̇T (t)]T , a state–space representation
of Eq. 1 is given by

ẋ(t) = Acx(t)+Bcp(t) (2a)
d(t) = Gcx(t)+Jcp(t) (2b)

where the state and the transmission matrices are defined as

Ac =

[
On In

−M−1K −M−1C

]
, Bc =

[
0

M−1Sp

]
(3)

and the output and feedforward matrices assume the form

Gc =

 Sd O
O Sv

−SaM−1K −SaM−1C

 , Jc =

 0
0

SaM−1Sp

 (4)

The matrices of Eq. 4 have been formulated by considering that the output vector d(t) may
contains combined vibration displacement, velocity and acceleration measurements from spe-
cific DOFs, in a way that is described by the selection matrices Sd , Sv and Sa, of appropriate
dimensions.

Assuming constant inter–sample behaviour of the input signal p(t) (e.g., zero–order hold
principle), the discrete–time equivalent of Eq. 2 is expressed as

xt+1 = Axt +Bpt (5a)
dt = Gxt +Jpt (5b)

with t now denoting the discrete–time index, t = 0,Ts,2Ts, . . . (Ts (s) is the sampling period),
A = eAcTs , B =

[
A− I

]
A−1

c Bc, G = Gc and J = Jc.

2.2 The estimation problem

If the stiffness matrix K depends on a set of parameters stored in vector θθθ = [k1 k2 . . . kn]
T ,

the problem considered herein pertains to the online estimation of θθθ , xt and pt , under the avail-
ability of (i) noise–corrupted observations dt and (ii) the mass and damping matrices of the
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structure. Mathematically, this problem is represented by the following augmented state–space
model

zt+1 = Aazt +Bapt +vt (6a)
dt = Gazt +Japt +wt (6b)

with zt = [xT
t θθθ

T
t ]

T ∈ R3n denoting the augmented state vector, vt and wt the zero mean process
and measurement noises with covariance matrices Q and R, respectively, and Aa, Ba, Ga and
Ja the augmented state–space matrices defined as

Aα =

[
A O
O I

]
, Bα =

[
B
0

]
, Gα =

[
G 0

]
, Jα =

[
J
0

]
(7)

3 THE STATE, INPUT AND PARAMETER ESTIMATION PROCEDURE

The proposed algorithm takes advantage of a DKF for estimating the input and of an UKF
for estimating both the states and the unknown parameters of the structure.

3.1 Input estimation: the DKF

The method introduces a fictitious process equation that describes the input force as

pt+1 = pt +vp
t (8)

where vp
t is a zero mean white Gaussian process with an associated covariance matrix Qp. In

this way a new state–space model can be obtained using Eqs. 6b. 7, in which the observed
quantity is dt , the unknown state is pt and where the actual sought–for state zt plays the role of
a known input to the system, when an estimate becomes available through the UKF:

pt+1 = pt +vp
t (9a)

dt = Jαpt +Gαzt +wt (9b)

Thus, through the implementation of the standard Kalman filter an online estimation of pt can be
obtained. To this, the measurement update step calculates the input gain, mean and covariance
as, (

JαPp−
t Jα T +R

)
Gp

t = Pp−
t Jα T (10a)

pt = p−t +Gp
t
(
dt−Gαz−t −Jαp−t

)
(10b)

Pp
t = Pp−

t +Gp
t JαPp−

t (10c)

where p−t , Pp−
t and z−t denote predictions of the input mean, input covariance and state mean at

time t−1, respectively. Accordingly, during the time update step, the input mean and covariance
predictions for time t +1 are provided by

p−t+1 = pt (11a)

P−t+1 = Pp
t +Qp (11b)
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3.2 State and parameter estimation: the UKF

The UKF is employed herein for obtaining a solution to the joint state and parameter estima-
tion problem [5, 14, 17]. The nonlinearity herein stems from the binomial products of system
states x and parameters θθθ in the system matrices of Eq. 6. Starting from this latter state–space
formulation and under the availability of measurement data at time t, that is, the input estimate
pt and the output dt , a set of sigma points is calculated (refer to the next section for all undefined
quantities)

Z−t =
[
z−t . . . z−t

]
+
√

c
[
000
√

P−t −
√

P−t
]

(12)

and directed to Eq. 6b to calculate a set of output vectors

D̂−t = g
(

Z−t , t
)

(13)

Accordingly, the output mean and covariance, as well as the cross covariance between the state
and the output are calculated by,

d̂t = D̂−t µµµz (14a)

Pdd
t = D̂−t MD̂−T

t +R (14b)

Ppd
t = Z−t MD̂T

t (14c)

respectively, while the filter gain Kt is calculated by

Pdd
t Kt = Ppd

t (15)

The updated state mean and covariance are estimated by

zt = z−t +Kt
[
dt− d̂t

]
(16a)

Pt = P−t +KtPdd
t KT

t (16b)

In the time update step a new set of sigma points is calculated

Zt =
[
zt . . . zt

]
+
√

c
[
000
√

Pt −
√

P1
]

(17)

and directed to Eq. 6a to calculate a set of state vectors

Ẑt = f
(

Zt ,1
)

(18)

Then, a prediction of the state mean and covariance for time t +1 is obtained by

z−t+1 = Ẑt µµµz (19a)

P−t+1 = ẐtMẐT
t +Q (19b)
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3.3 The proposed DKF-UKF estimation algorithm

The steps of the proposed method are as follows:

INITIALIZE
1. Set initial values for the input vector: p0 and Pp

0

2. Set initial values for the augmented state vector: z0 and P0

3. Set the parameters of the UKF (nz the size of the augmented state vec-
tor) [19]:

- α = 1, β = 2, κ = 0

- λ = α2(nz +κ)−nz, c = α2(nz +κ)

- W 0
m = λ/(nz +λ ), W i

m = 1/2(nz +λ ), i = 1,2, . . . ,2nz

- W 0
c = λ/(nz +λ )+(1−α2 +β ), W i

c =W i
m, i = 1,2, . . . ,2nz

- µµµz = [W 0
m . . . W 2nz

m ]T

- M =
(
I− [µµµz . . . µµµz]

)
×diag(W 0

c . . . W 2nz
c )×

(
I− [µµµz . . . µµµz]

)T

UPDATE at time t (when measured output dt is available)

1. Calculate input gain:
(
JαPp−

t Jα T +R
)
Gp

t = Pp−
t Jα T

2. Update input mean and covariance:

pt = p−t +Gp
t
(
dt−Gaz−t −Jαp−t

)
Pp

t = Pp−
t +Gp

t JαPp−
t

3. Calculate sigma points: Z−t =
[
z−t . . . z−t

]
+
√

c
[
000
√

P−t −
√

P−t
]

4. Propagate sigma points through the output equation: D̂−t = g
(

Z−t , t
)

5. Calculate output mean and covariance:

d̂t = D̂−t µµµz

Pdd
t = D̂−t MD̂−T

t +R

6. Calculate cross covariance between state and output: Ppd
t = Z−t MD̂−T

t

7. Calculate state gain: Pdd
t Kt = Ppd

t

8. Update state mean and covariance:

zt = z−t +Kt
[
dt− d̂t

]
Pt = P−t +KtPdd

t KT
t
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PREDICT at time t

1. Predict input mean and covariance for t +1:

p−t+1 = pt

P−t+1 = Pp
t +Qp

2. Calculate sigma points: Zt =
[
zt . . . zt

]
+
√

c
[
000
√

Pt −
√

Pt
]

3. Propagate sigma points through the state equation: Ẑt = f
(

Zt , t
)

4. Predict state mean and covariance for t +1:

z−t+1 = Ẑt µµµz

P−t+1 = ẐtMẐT
t +Q

2
1k

2
1k

2
2k

2
2k

3m

2
3k

2
3k

4m

2
4k

5m

2
5k

2
5k

2
4k

2m
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Figure 1: The simulated five–story shear frame structure.

4 APPLICATION

The proposed DKF–UKF framework is now applied to the input, state and parameter esti-
mation problem of a simulated five–story shear frame (Fig. 1) subject to wind excitation, using
limited output observation. Each story is modeled as a lumped mass, while the vertical columns
are modeled as massless springs with equivalent stiffness. Table 1 illustrates the selected phys-
ical parameters and the associated vibration modes of the shear building. Regarding the latter,
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Table 1: Physical and modal parameters of the building

Physical Space Modal Space
Story m j (Mgr) k j (kN/m) Mode fn (Hz) ζn (%)

1 10 10000 1 1.566 1.000
2 8 10000 2 4.400 1.362
3 8 9000 3 6.829 1.553
4 8 9000 4 8.922 1.814
5 8 9000 5 10.259 1.000

energy dissipation in the form of Rayleigh damping has been adopted, with the first and the
last mode being characterized by 1% modal damping. It is assumed that the shear velocity
field is such that the corresponding wind pressures are non–negligible only in the highest story,
producing thus the force excitation that is depicted at Fig. 1.

The simulation data are obtained through the discretization of the structural equation (in fact
its state–space representation) into the state–space model of Eq. (5), at a sampling period Ts =
0.0025s, using the zero–order hold. A zero mean Gaussian white noise process with variance
10kN is used as excitation. Throughout the simulation both the state and the output equations
are noise–corrupted by zero mean Gaussian white noise processes of covariance matrices

Qs = 10−12I10 and R = diag(4 ·10−3,10−4,10−4)

respectively. The size of R stems from the fact that the vibration acceleration response from only
the first, the fourth and the last story is considered available. The augmented state equation’s
noise covariance matrix Q is set as

Q = diag(Qs,10−8I5)

and the one of the fictitious Eq. 7 as Qp = 10−8.
The initial parameter vector and its covariance matrix are set as

θ0 = [6000 6000 6000 6000 6000]T

Qθ
0 = diag(0.2 ·10−5,1.0 ·10−5,0.8 ·10−5,0.8 ·10−5,2.0 ·10−5)

respectively, while the initial state vector x0 is set to zero and Qx
0 = 10−15I10. Thus,

z0 = [x0 θθθ 0]
T

P0 = diag(Qx
0,Q

θ
0 )

Figures 2–5 display the outcome of a 300s simulation. In general, the results are very en-
couraging, as the estimated quantities follow the true ones with a high degree of accuracy. In
particular, the input force estimate (Fig. 2) follows the real force quite accurately already from
the start of the simulation time and before the convergence of the unknown parameters. Cor-
respondingly, similar performance is observed in the displacement and velocity states, aside
form minor discrepancies (Figs. 3–4). Finally, the unknown stiffness parameters have also been
successfully identified (Fig. 5 and Tab. 2) with an exception of k5, which seems to converge
in a value lower (approximately 15%) than its nominal value. However, this does not affect
the estimation of the directly affected states, indicating a lesser influence of this parameter
on the model performance under the particular excitation, additionally verifying the proposed
method’s robustness.
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Figure 2: Actual (black) versus estimated (red) input force. Left figure: total simulation time. Right figure:
approximately 0.25s detail.
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Figure 3: Actual (black) versus estimated (red) displacements. Left column: total simulation time. Right column:
approximately 10s detail.
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Figure 4: Actual (black) versus estimated (red) velocities. Left column: total simulation time. Right column:
approximately 10s detail.

5 CONCLUSIONS

The joint input–state–parameter estimation problem of a structural system of uncertain prop-
erties using limited, noise–corrupted observations was the main pursuit of the current study.
To this end, a DKF–UKF framework was developed and applied to a simulated frame subject
to wind loading. The proposed scheme introduces a fictitious process equation that aims at
resembling the unknown dynamics of the structural excitation and designs a DKF for the mea-
surement and time update of the unknown input. This input is then forwarded to an augmented
state–space model, the state vector of which contains both the original states of the structure
and a vector of unknown structural parameters. Since the latter two quantities are nonlinearly
related, the corresponding state–parameter estimation problem is handled by the UKF.

The illustrated results indicate a robust performance under purely random excitation and sug-
gest further exploration, towards a number of issues that deserve further investigation. Among
others, the applicability and the robustness of the fictitious process equation for the description
of the unknown input needs validation and adjustment over a range of different input classes
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Figure 5: Actual (black) versus estimated (red) story stiffness.

that include purely sinusoidal and/or nonstationary characteristics, as well as for different level
of system uncertainties, and limited observation sets. Extensions to time–varying structures is
also a topic of current research undertaken by the authors, in an effort to formulate a rigorous
and robust framework for fatigue prediction of structures under realistic conditions.
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Table 2: Percentage errors between actual and estimated story stiffness. Units in kN/m.

k1 k2 k3 k4 k5

True 10000 10000 9000 9000 9000
Estimated 10257 10152 8206 9314 7609
Error (%) 2.567 1.515 8.818 3.485 15.450
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